# THERMODYNAMISCHE UNTERSUCHUNG DES SYSTEMS WISMUT-WISMUTTRIBROMID

BRUNO PREDEL UND DIETER ROTHACKER

Institut für Metallforschung der Universität Münster, Münster, Westfalen (Deutschland) (Eingegangen den 27. Januar 1971)

#### ABSTRACT

The thermodynamic excess functions of the liquid mixed phases in the system  $Bi-BiBr_3$  have been determined as a contribution towards the knowledge concerning the energy relationships in this system. By establishing a vapour pressure equilibrium between pure  $BiBr_3$  and the  $Bi-BiBr_3$  solution under examination the partial vapour pressure of  $BiBr_3$  has been determined for a prescribed temperature difference, and from this the thermodynamic activities between 450° and 570°C have been obtained. These activities exhibit positive deviations from Raoult's law over the entire concentration range examined.

The enthalpies of mixing were determined from heat content measurements in an adiabatic calorimeter. From such measurements the enthalpy of melting and the enthalpy of transformation of  $BiBr_3$ , as well as the mean specific heat of  $BiBr_3$ and of several liquid  $Bi-BiBr_3$  mixed phases, were obtained. The enthalpies of mixing have negative signs on the  $BiBr_3$ -rich side of the system and positive signs on the metal-rich side. It is also possible to calculate the excess entropies from the experimental data obtained; these were negative over the entire concentration range and were, of course, very small at higher bismuth concentrations.

#### ZUSAMMENFASSUNG

Um einen Beitrag zur Kenntnis der energetischen Verhältnisse im System Bi-BiBr<sub>3</sub> zu liefern, wurden die thermodynamischen Überschussfunktionen der flüssigen Mischphasen bestimmt. Durch Einstellung des Dampfdruckgleichgewichtes zwischen reinem BiBr<sub>3</sub> und der zu untersuchenden Bi-BiBr<sub>3</sub>-Lösung bei vorgegebener Temperaturdifferenz wurden die Partialdampfdrucke des BiBr<sub>3</sub> ermittelt und daraus die thermodynamischen Aktivitäten zwischen 450 und 570°C erhalten. Sie weisen im gesamten Konzentrationsbereich positive Abweichungen vom Raoultschen Gesetz auf.

Die Mischungsenthalpien wurden durch Wärmeinhaltsmessungen in einem adiabatischen Kalorimeter bestimmt. Desgleichen sind durch Wärmeinhaltsmessungen auch die Schmelzenthalpie und die Umwandlungsenthalpie des BiBr<sub>3</sub> sowie die mittleren spezifischen Wärmen des BiBr<sub>3</sub> und einiger flüssiger Bi-BiBr<sub>3</sub>-Mischphasen gewonnen worden. Die Mischungsenthalpien haben auf der BiBr<sub>3</sub>-Seite des Systems negative und auf der Metallseite positives Vorzeichen. Die aus den gewonnenen experimentellen Daten ebenfalls zugänglichen Überschussentropien sind im gesamten Konzentrationsbereich negativ, weisen allerdings bei hohen Wismutgehalten nur kleine Beträge auf.

### EINFÜHRUNG

Die gegenseitige Löslichkeit zahlreicher Stoffpaare beruht bekanntlich darauf, dass die Komponenten ihre individuellen Bindungs- und Struktureigenheiten in einer chemischen Reaktion zugunsten eines thermodynamisch stabileren atomaren Aufbaus der Mischphase aufgeben. Dies dürfte auch bei der Bildung flüssiger Lösungen aus metallischem Wismut und seinen Trihalogeniden der Fall sein. Nicht sehr weit oberhalb der Schmelzpunkte der Komponenten der jeweiligen binären Systeme ist, wenn von dem noch nicht untersuchten System Bi-BiF<sub>3</sub> abgesehen wird, eine vollständige Löslichkeit von Wismut und Wismuttrihalogenid vorhanden. Bei niedrigeren Temperaturen, beispielsweise im Falle des Systems Bi-BiBr<sub>3</sub> unterhalb 538 °C, tritt eine Mischungslücke im flüssigen Zustand auf. Jeweils im Konzentrationsbereich dieser Mischungslücken wird im festen Zustand ein Subhalogenid der Zusammensetzung BiX gebildet.

Verschiedenartige Untersuchungen deuten auf das Auftreten komplex aufgebauter Teilchen in den flüssigen Lösungen hin, eine Klärung der Bindungs- und Strukturverhältnisse ist indessen bisher noch nicht gelungen<sup>1</sup>. Nachdem die energetischen Verhältnisse des Systems Bi-BiJ<sub>3</sub> kürzlich untersucht worden sind<sup>2</sup>, schien es nützlich, in gleicher Weise auch die entsprechenden Eigenschaften des weitgehend analog aufgebauten Systems Bi-BiBr<sub>3</sub> zu erforschen, um zur Schaffung einer Basis beizutragen, die eine Diskussion der Faktoren erlauben könnte, welche die energetischen Verhältnisse in Wismut-Wismuthalogenid-Systemen bestimmen.

#### EXPERIMENTELLE HINWEISE

Die Überprüfung der Schmelz- und Umwandlungsgleichgewichte im System Bi-BiBr<sub>3</sub> erfolgte mit Hilfe der Differential-Thermoanalyse, und zwar in analoger Weise wie dies früher für das System Bi-BiJ<sub>3</sub> dargelegt worden ist<sup>3</sup>.

Zur Ermittlung der freien Mischungsenthalpien der flüssigen Mischphasen wurden Messungen der Partialdampfdrucke der leichter flüchtigen Komponente (BiBr<sub>3</sub>) nach einer modifizierten Taupunktsmethode durchgeführt. Die Versuchsanordnung entsprach völlig derjenigen, die bei der Untersuchung des Systems Bi-BiJ<sub>3</sub> angewandt worder war und bereits früher eingehend beschrieben wurde<sup>2</sup>. Es sei bemerkt, dass der Dampfdruck des BiBr<sub>3</sub> schon wenig oberhalb der kritischen Entmischungstemperatur des Systems Bi-BiBr<sub>3</sub> mehr als 3 Atm. beträgt. Es können daher bei der Entfernung des Reaktionsrohrs aus dem Ofen bis zum Abschmelzen

der Kapillare und der damit erfolgenden Trennung der Reaktionsräume bereits merkliche Veränderungen der eingestellten Mischphasenkonzentration eintreten. Diese Störung ist naturgemäss bei hohen BiBr<sub>3</sub>-Gehalten besonders stark. Deshalb wurden bei hohen BiBr<sub>3</sub>-Konzentrationen keine Messungen durchgeführt und ferner die Versuchstemperaturen möglichst niedrig gehalten.

Eine weitere Beeinträchtigung der Messgenauigkeit ist bedingt durch das Auftreten geringer Mengen von Molekelarten im Dampf, die wismutreicher sind als BiBr<sub>3</sub>. Während dieser Anteil im Falle des früher untersuchten Systems Bi-BiJ<sub>3</sub> infolge seiner Geringfügigkeit ohne praktischen Einfluss auf die Messergebnisse war, machte er sich im vorliegenden Falle der Bi-BiBr<sub>3</sub>-Mischphasen störend bemerkbar. Darauf soll weiter unten kurz eingegangen werden.

Die Ermittlung der integralen Mischungsenthalpien erfolgte aus den Wärmeinhalten der flüssigen Mischphasen und der flüssigen Komponenten. Die Wärmeinhalte wurden mit einem adiabatischen Kalorimeter an Proben bestimmt, die in Glasampullen eingeschlossen waren. Die Experimente wurden analog wie bei der Untersuchung des Systems Bi-BiJ<sub>3</sub> durchgeführt<sup>2</sup>.

Als Ausgangssubstanzen für die Untersuchungen dienten Wismut mit 99,9995% Bi und BiBr<sub>3</sub>, das aus diesem Wismutmetall und chlorfreiem Brom von Merck hergestellt worden war. Die Gewinnung des BiBr<sub>3</sub> aus den Elementen erfolgte durch Einleiten von Brom mittels eines Argonstromes als Trägergas in geschmolzenes Wismut. Das erhaltene BiBr<sub>3</sub> wurde vor der Verwendung durch Sublimation im Vakuum bei kleinem Temperaturgefälle gereinigt. Es wurde besonders darauf geachtet, dass kein Metallüberschuss und keine Verunreinigung durch leicht bei Zutritt von Luftsauerstoff entstehendes BiOBr in dem zur Verwendung gelangenden BiBr<sub>3</sub> enthalten war.

### ERGEBNISSE

# Revision des Zustandsdiagramms Bi-BiBr3

Über das Zustandsdiagramm Bi-BiBr<sub>3</sub> liegen einige Untersuchungen vor, auf deren Ergebnisse kurz hingewiesen sei. Eggink<sup>4</sup> sowie Urazow und Sokolowa<sup>5</sup> nahmen aufgrund eines bei 70 At.-% Bi gefundenen ausgeprägten syntektischen Punktes an, dass ein Subhalogenid der ungefähren Zusammensetzung BiBr existiert. Einen eindeutigen Beweis für die Existenz dieser Verbindung konnten sie indessen nicht liefern.

Eine umfassende Aufklärung des Systems brachten erst die Untersuchungen von Yosim und Mitarb.<sup>6</sup>. Hierbei zeigte sich auch, dass die Untersuchung durch das Auftreten metastabiler Phasen erheblich behindert wird. Das von Yosim und Mitarb.<sup>6</sup> angegebene Zustandsdiagramm ist in Abb. 1 wiedergegeben. Die von uns erzielten Ergebnisse sollen an einer nach der Methode der Differential-Thermoanalyse bei 60 At.-% Bi gewonnenen Abkühlungs- und Erhitzungskurve dargelegt werden.

Beim Abkühlen aus der homogenen Schmelze tritt zunächst bei 537°C die Entmischung in zwei flüssige Phasen ein (vgl. Abb. 2). Bei 263°C wird sodann der erste starke Wärmeeffekt registriert. Die steile Anstiegsflanke weist auf eine erheb-



Abb. 1. Das Zustandsdiagramm Bi-BiBr3 nach Ref. 6.



Abb. 2. Temperaturdifferenz-Zeit-Abkühlungskurve einer Wismut-Wismuttribromid-Probe mit 60 At.-% Wismutmetall.

liche Unterkühlung der Reaktion hin. Das gleiche tritt bei 227°C auf. Bei 206°C folgt der von der Erstarrung des salzreichen Eutektikums herrührende Effekt und schliesslich, ebenfalls nach Unterkühlung, der mit der Umwandlung des Tribromids zusammenhängende Effekt bei einer Temperatur von 150°C.

Die an der gleichen Probe aufgenommene Erhitzungskurve ist in Abb. 3 dargestellt. Der Umwandlungseffekt des BiBr<sub>3</sub> tritt jetzt bei 175°C auf. Das salzreiche Eutektikum wird, wie bei der Abkühlung, bei 206°C gefunden. Bei 260°C schmilzt das metallreiche Eutektikum, das infolge mangelhafter Gleichgewichtseinstellung beim Abkühlen auch bei 60 At.-% Bi noch auftreten kann. Bei 300°C zerfällt schliesslich das Wismutmonobromid.

Im Hinblick auf die auftretenden starken Unterkühlungen ist naturgemäss der Erhitzungskurve mehr Gewicht beizumessen als der Abkühlungskurve. Die aus den

Erhitzungskurven gewonnenen Temperaturpunkte für die auftretenden thermischen Effekte stimmen mit den von Yosim und Mitarb.<sup>6</sup> angegebenen praktisch überein. Das von ihnen angegebene Zustandsdiagramm konnte damit bestätigt werden.



Abb. 3. Temperaturdifferenz-Zeit-Aufheizkurve einer Wismut-Wismuttribromid-Probe mit 69 At.-% Wismutmetall.

Nachdem in einer früheren Untersuchung<sup>3</sup> die Isolierung des BiJ gelungen war, lag es nahe, in analoger Weise auch reines BiBr darzustellen. Aus vorgetemperten Proben mit 20 bis 60 At.-% Wismutmetall, die neben BiBr überschüssiges BiBr<sub>3</sub> enthielten, wurde versucht, das BiBr<sub>3</sub> durch Sublimation im Vakuum zu entfernen. Die Probe wurde bei 195°C gehalten, während die Kondensationsstelle des BiBr<sub>3</sub> 185°C betrug. Es zeigte sich, dass — anders als beim System Bi-BiJ<sub>3</sub> — hier kein reines BiBr<sub>3</sub> absublimierte, sondern dass auch etwas metallisches Wismut an der kalten Stelle auftrat. Nach 4 Wochen konnte eine Anreicherung an BiBr in der eingesetzten Probe analytisch nachgewiesen werden, eine Reindarstellung von BiBr gelang indessen nicht.

# Wārmeinhalte, Schmelz- und Umwandlungsenthalpie des Wismuttribromids

Für die Auswertung der weiter unten beschriebenen kalorimetrischen Untersuchungsergebnisse hinsichtlich der Mischungsenthalpien der flüssigen Lösungen des Systems Bi-BiBr<sub>3</sub> ist eine genaue Kenntnis der Wärmeinhalte des Wismuttribromids erforderlich. Die mit Hilfe eines bereits früher<sup>2</sup> beschriebenen Fallkalorimeters gewonnenen Wärmeinhalte des BiBr<sub>3</sub> sind in Abb. 4 graphisch dargestellt. Die resultierenden mittleren spezifischen Wärmen und die aus dem Wärmeinhaltssprung am Schmelzpunkt unmittelbar zugängliche Schmelzenthalpie sind in Tabelle I gemeinsam mit Literaturdaten zusammengestellt.

Die Schmelzenthalpie stimmt mit dem von Topol und Ransom<sup>7</sup> angegebenen Wert innerhalb der Fehlergrenzen überein. Die in der Literatur mitgeteilten mittleren spezifischen Wärmen weisen deutliche Diskrepanzen auf. Der von uns für die flüssige Verbindung ermittelte Wert weicht von der von Topol und Ransom<sup>7</sup> gefundenen

18 **75** 14 Härmeinhalt in keal/Ma 12 10 8 5 6 4 150 *z*00 250 Fatur in °C 300 350 400 Tem

mittleren spezifischen Wärme erheblich ab, ist aber in guter Übereinstimmung mit den Angaben von Cubicciotti<sup>8</sup>.

Abb. 4. Wärmeinhalte des Wismuttribromids oberhalb 160 °C bezogen auf eine Kalorimetertemperatur von 20 °C.

# TABELLE I

SCHMELZENTHALPIE, UMWANDLUNGSENTHALPIE UND MITTLERE SPEZIFISCHE WÄRMEN DES WISMUT-TRIBROMIDS

| Ref.<br>Topol und Ransom <sup>7</sup><br>Cubicciotti <sup>8</sup> | Schmelzenthalpie<br>(cal/Mol)<br>5190±200 | Umwandlungsenthalpie<br>(cal/Mol) | Mittlere spezifische Wärme des<br>BiBr3 (cal·Mol <sup>-1</sup> ·Grad <sup>-1</sup> ) |           |            |  |
|-------------------------------------------------------------------|-------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|-----------|------------|--|
|                                                                   |                                           |                                   | fest                                                                                 |           | flüssig    |  |
|                                                                   |                                           |                                   | t <156°                                                                              | C t>156°C | -          |  |
|                                                                   |                                           |                                   | 26<br>26                                                                             | 29<br>26  | 29<br>37,7 |  |
| Diese Arbeit                                                      | $5140 \pm 130$                            | 1150                              | 26,2                                                                                 | 28,2      | 36,8       |  |

Wismuttribromid weist bei 156°C eine Phasenumwandlung auf, deren Natur bisher nicht geklärt ist<sup>8</sup>. Eine merkliche Änderung der Struktur konnte nicht beobachtet werden<sup>9</sup>. Cubicciotti<sup>8</sup> hat die Summe aus Schmelzenthalpie und Umwandlungsenthalpie zu 5500 cal/Mol ermittelt. Mit dem von Topol und Ransom<sup>7</sup> bestimmten Wert für die Schmelzenthalpie von  $\Delta H^{f} = 5190 \pm 200$  cal/Mol folgt eine Umwandlungsenthalpie von  $\Delta H^{u} = 300 \pm 200$  cal/Mol.

Die genaue Kenntnis des Wertes für  $\Delta H^{u}$  ist für die weiter unten vorgenommenen Auswertungen der Wärmeinhalte der Bi-BiBr<sub>3</sub>-Lösungen von erheblicher Bedeutung. Mit seiner Hilfe kann in einer beliebigen Mischphase des betrachteten Systems Bi-BiBr<sub>3</sub> aus der bekannten Einwaage an Tribromid und der an der jeweiligen Probe gemessenen Umwandlungsenthalpie die eventuell gebildete Menge des Monohalogenids BiBr zumindest grössenordnungsmässig ermittelt werden. Ferner muss für die noch folgende Auswertung gewährleistet sein, dass die Phasenumwandlung des Tribromids bei 156°C auch in Gegenwart von Wismutmetall unter den angewandten experimentellen Bedingungen der Wärmeinhaltsmessungen vollständig zu Ende läuft.

Die Umwandlungsenthalpie wurde zunächst aufgrund von Wärmeinhaltsmessungen bestimmt. Die Wärmeinhalte des  $BiBr_3$  sind für den hier interessierenden Temperaturbereich in Abb. 5 als Funktion der Temperatur wiedergegeben. Der



Abb. 5. Wärmeinhalte des Wismuttribromids in der Umgebung des Umwandlungspunktes bezogen auf eine Kalorimetertemperatur von 20°C.

Wärmeinhaltssprung bei 156°C entspricht einer Umwandlungsenthalpie von  $\Delta H^{u} = 1150 \pm 80$  cal/Mol. Dieser Wert unterscheidet sich von dem von Cubicciotti<sup>8</sup> angegebenen um den Faktor 4.

Zur Kontrolle wurde die Umwandlungsenthalpie ferner nach der Methode der quantitativen Differential-Thermoanalyse bestimmt. Eine typische Temperaturdifferenz-Zeit-Kurve ist in Abb. 6 wiedergegeben. Sie ist während der Erhitzung der Probe aufgenommen worden. Die Phasenumwandlung setzt in diesem Falle erst nach einer



Abb. 6. Temperaturdifferenz-Zeit-Aufheizkurve zur Ermittlung der Umwandlungswärme von Wismuttribromid.

Überhitzung von etwa 20°C über den Gleichgewichtspunkt ein. Die Flächen  $F_s$  und  $F_u$ unter den Gipfeln in der  $\Delta T$ -Zeit-Kurve sind den sie bewirkenden Wärmetönungen beim Schmelzen bzw. bei der Phasenumwandlung proportional. Es resultiert das Verhältnis  $F_s$ :  $F_u = 4,3$ . Unter Zugrundelegung der von uns ermittelten Schmelzenthalpie  $\Delta H^f = 5150$  cal/Mol folgt für die Umwandlungsenthalpie ein Wert von 1200 cal/Mol, der in guter Übereinstimmung mit dem von uns aus den Wärmeinhaltsmessungen gewonnenen  $\Delta H^u$ -Wert des BiBr<sub>3</sub> ist.

Auch an Bi-BiBr<sub>3</sub>-Mischphasen mit Gehalten bis zu 66 At.-% Wismutmetall ergaben sich ähnliche Werte für die Umwandlungsenthalpie. Hierbei wurden die homogenisierten, einphasigen flüssigen Lösungen durch Einwerfen in das Kalorimeter rasch zur Erstarrung gebracht. An den so vorbehandelten Proben wurden dann sowohl durch Wärmeinhaltsmessungen als auch mittels der Differential-Thermoanalyse die Umwandlungsenthalpien bestimmt. Unabhängig von der Konzentration an zugesetztem Wismutmetall ergab sich — in völliger Übereinstimmung mit dem an reinem BiBr<sub>3</sub> gewonnenen Wert — eine Umwandlungsenthalpie von  $\Delta H^u =$ = 1150 cal/Mol.

### Mittlere spezifische Wärme von Bi-BiBr3-Mischphasen

Die ungewöhnliche Form der Mischungslücke auf der wismutreichen Seite des Systems Bi-BiBr<sub>3</sub> (vgl. Abb. 1) dürfte auf eine Änderung der Bindungsverhältnisse mit der Temperatur zurückzuführen sein. Dies sollte sich eventuell in einem entsprechenden Gang der spezifischen Wärme der homogenen Lösungen im Einphasenbereich neben der Mischungslücke bemerkbar machen. Es lag daher nahe, in diesem Konzentrationsgebiet mittels Wärmeinhaltsmessungen die spezifischen Wärmen zu bestimmen. Die an Lösungen mit 19,7, 33,6, 38,2 und 43,6 At.-% Wismutmetall im Temperaturbereich von 200 bis 550°C erzielten Ergebnisse sind in den Abb. 7 und 8 graphisch dargestellt.



Abb. 7. Wärmeinhalte von Bi-BiBr<sub>3</sub>-Proben in Abhängigkeit von der Temperatur.



Abb. 8. Wärmeinhalt einer Bi-BiBr<sub>3</sub>-Probe mit 43,6 At.-% Wismutmetall in Abhängigkeit von der Temperatur.

Bei den wismutärmeren Lösungen hängen die Wärmeinhalte praktisch linear von der Temperatur ab. Bei der Lösung mit 43,6 At.-% Bi treten im Temperaturbereich zwischen 410 und 500°C merkliche Abweichungen von der Linearität auf. Im Hinblick darauf, dass bei den wismutärmeren Lösungen keine derartige Anomalie vorhanden ist, liegt die Vermutung nahe, dass die bei 43,6 At.-% Wismutmetall

gefundene Unregelmässigkeit nicht auf eine spezielle Eigenschaft der homogenen Lösung dieser Konzentration zurückzuführen ist. Nach dem Zustandsdiagramm von Yosim und Mitarb.<sup>6</sup> (vgl. Abb. 1) sollte eine Lösung dieser Konzentration im gesamten Temperaturbereich noch einphasig sein. Die Begrenzungen der Mischungslücke sind indessen nicht so genau bekannt, dass dies für die fragliche Lösung eindeutig entschieden werden könnte. Es ist kaum anzunehmen, dass bereits bei der sehr geringen Konzentrationsänderung von 38,2 At.-% Bi (wo  $C_p$  noch konstant ist) auf 43,6 At.-% Bi eine so starke Änderung der Bindungsverhältnisse cintritt, dass dies den Unterschied im Gang der spezifischen Wärmen mit der Temperatur erklären könnte. Die Anomalie bei 43,6 At.-% Wismutmetall dürfte daher eher eine unmittelbare Auswirkung der Aufspaltung der homogenen Lösung in zwei Phasen sein. Aussagen über eine Änderung der Bindungsverhältnisse mit aus den vorliegenden Ergebnissen nicht unmittelbar gewonnen werden.

Die aus den Wärmeinhaltsmessungen erhaltenen mittleren spezifischen Wärmen sind in Tabelle II zusammengestellt.

#### TABELLE II

MITTLERE SPEZIFISCHE WÄRMEN FLÜSSIGER Bi-BiBr3-LÖSUNGEN

| At% Wismutmetall | $C_P$ (cal·Mol <sup>-1</sup> ·Grad <sup>-1</sup> ) |
|------------------|----------------------------------------------------|
| 19,71            | 38                                                 |
| 33,58            | 31                                                 |
| 38,18            | 29                                                 |
| 43,6             | 25*                                                |

"Bei Temperaturen unterhalb 400°C.

### Thermodynamische Aktivitäten

In der Literatur sind zwar Messungen des Partialdampfdrucks von BiBr<sub>3</sub> über flüssigen Bi-BiBr<sub>3</sub>-Lösungen beschrieben, sie erfassen aber nicht den gesamten Konzentrationsbereich, sondern erstrecken sich nur von 0 bis 35 At.-% Bi. Diese von Cubicciotti und Keneshea<sup>10</sup> nach der Mitführungsmethode durchgeführten Untersuchungen liefern thermodynamische Aktivitäten, die starke positive Abweichungen von der Geraden des Raoultschen Gesetzes aufweisen.

Analog wie im System Bi-BiJ<sub>3</sub> haben wir versucht, auch im System Bi-BiBr<sub>3</sub> die Partialdampfdrucke des Trihalogenids über den flüssigen Lösungen zu messen. Um einen möglichst breiten Konzentrationsbereich zu erfassen, ist es sinnvoll, Aktivitäten auch oberhalb der kritischen Temperatur der Mischungslücke zu ermitteln. Auf die experimentellen Schwierigkeiten, die sich dann aufgrund der hohen Partialdampfdrucke des BiBr<sub>3</sub> ergeben, wurde bereits eingangs hingewiesen, desgleichen auch auf Störungen infolge der im BiJ<sub>3</sub>-Dampf auftretenden Molekelarten mit höherem Wismutgehalt. Cubicciotti und Keneshea<sup>10</sup> konnten nachweisen, dass bei 400°C der Dampf über wismutreichen Bi-BiBr<sub>3</sub>-Lösungen etwa 1% mehr Wismut enthält, als der Zusammensetzung BiBr<sub>3</sub> entspricht. Diese Feststellung

konnten wir durch Analyse von Kondensationsprodukten — zumindest in qualitativer Hinsicht — bestätigen. Es wurde bei den Partialdampfdruckmessungen versucht, den dadurch bedingten Transport von Wismut im Reaktionsrohr möglichst gering zu halten, indem das Reaktionsgut nur so lange bei der Versuchstemperatur im Ofen belassen wurde, als zur hinreichend weitgehenden Einstellung der Gleichgewichtskonzentration in der Lösung durch Überdestillieren von BiBr<sub>3</sub> unbedingt erforderlich war. Der Anteil von 1% zusätzlichem Wismut im Dampf wurde bei der Auswertung im Hinblick auf die in diesem System ohnehin merkliche Streuung der Partialdampfdruckwerte nicht berücksichtigt.

Aus den BiBr<sub>3</sub>-Partialdampfdrucken,  $p_{BiBr_3}$ , und den von Cubicciotti und Keneshea<sup>10</sup> mitgeteilten Dampfdrucken  $p_{BiBr_3}^0$  für das reine Wismuttribromid resultieren gemäss

$$a_{\rm BiBr_3} = \frac{p_{\rm BiBr_3}}{p_{\rm BiBr_3}^{\rm o}} \tag{1}$$

die thermodynamischen Aktivitäten des BiBr<sub>3</sub>. Die Ergebnisse sind in Abb. 9 wiedergegeben und in Tabelle III zusammengestellt. Die aus den von Cubicciotti und Keneshea<sup>10</sup> mitgeteilten Partialdampfdrucken des Wismuttribromids erhältlichen



Abb. 9. Aktivitätsisothermen von Wismuttribromid und von Wismut in flüssigen Bi-BiBr<sub>3</sub>-Lösungen bei 400, 450, 480 und 570°C; ---- (\*) nach Messungen von D. Cubicciotti und F. J. Keneshea<sup>10</sup>.

thermodynamischen Aktivitäten sind in Abb. 9 ebenfalls in Form einer Isotherme eingezeichnet. Sie zeigen merklich stärkere positive Abweichungen von der Raoultschen Geraden als von uns gefunden werden konnte.

Für den wismutarmen Bereich des Systems ergibt sich die Möglichkeit, thermodynamische Aktivitäten des BiBr<sub>3</sub> anhand des Zustandsdiagramms aus dem Gang der

| Bei 570°C |                    | Bei 480°C          |                    | Bei 450°C          |                    |
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|
| XBINT3    | a <sub>BiBr3</sub> | x <sub>BiBr3</sub> | a <sub>BIBr3</sub> | x <sub>BiBr3</sub> | a <sub>BiBr3</sub> |
| 0,040     | 0,110              | 0,025              | 0,225              | 0,416              | 0,610              |
| 0,100     | 0,275              | 0,036              | 0,326              | 0,460              | 0,600              |
| 0,130     | 0,330              | 0,047              | 0,345              | 0,476              | 0,625              |
| 0,160     | 0,405              | 0,050              | 0,400              | 0,520              | 0,620              |
| 0,176     | 0,450              | 0,073              | 0,482              | 0,620              | 0,697              |
| 0,200     | 0,467              | 0,064              | 0,510              | 0,640              | 0,727              |
| 0,258     | 0,510              | 0,075              | 0,551              | 0,675              | 0.733              |
| 0,301     | 0,550              | 0,130              | 0,637              | ·                  | •                  |
| 0.350     | 0,580              | 0.286              | 0.652              |                    |                    |
| 0,562     | 0,616              | -                  | •                  |                    |                    |

**TABELLE III** 

THERMODYNAMISCHE AKTIVITÄTEN VON  $BiBr_3$  im system  $Bi-BiBr_3$  (x = molenbruch)

Liquidustemperatur mit der Lösungskonzentration zu berechnen. Da eine merkliche Mischkristallbildung auf der BiBr<sub>3</sub>-Seite bisher nicht nachgewiesen wurde und in grösserem Ausmass auch nicht anzunehmen ist, kann die partielle freie Mischungsenthalpie der mit reinem festen BiBr<sub>3</sub> im Gleichgewicht existierenden flüssigen Lösung,  $\overline{\Delta G}_{\text{BiBr}}^{1}$ , folgendermassen ausgedrückt werden:

$$\overline{\mathcal{A}G}^{l}_{BiBr_{3}} = -\frac{L^{f}}{T^{f}}(T^{f}-T) - T\int_{T}^{T^{f}} \frac{C^{s}_{p} - C^{l}_{p}}{T} \, \mathrm{d}T + \int_{T}^{T^{f}} (C^{s}_{p} - C^{l}_{p}) \, \mathrm{d}T$$
(2)

Für die molare Schmelzenthalpie  $L^{f}$  sowie für die Molwärmen  $C_{p}^{s}$  und  $C_{p}^{l}$  des flüssigen bzw. festen BiBr<sub>3</sub> sind die in dieser Arbeit ermittelten Werte eingesetzt worden. Die absolute Schmelztemperatur  $T^{f}$  des BiBr<sub>3</sub> sowie die Liquidustemperaturen T wurden aus dem von S. J. Yosim und Mitarb.<sup>6</sup> aufgestellten Zustandsdiagramm entnommen (vgl. Abb. 1). Die resultierenden  $\overline{\Delta G}_{BiBr_3}^{l}$ -Werte und die der nach

$$\overline{\Delta G_{\text{BiBr}_{1}}^{1}} = RT \ln a_{\text{BiBr}_{2}} \tag{3}$$

gegebenen thermodynamischen Aktivitäten gelten für die jeweilige Gleichgewichtstemperatur. Um die Ergebnisse zu einer Isotherme zusammenzufassen, wurden sie auf eine gemeinsame Temperatur von 570°C umgerechnet, und zwar anhand der Beziehung

$$\frac{\mathrm{d}(\ln a_{\mathrm{BiBr_{y}}})}{\mathrm{d}\left(\frac{1}{T}\right)} = \frac{\overline{\Delta H}_{\mathrm{BiBr_{y}}}}{R}.$$
(4)

Die partiellen Mischungsenthalpien,  $\overline{\Delta H}_{BIBr_{1}}$ , sind gemäss der Beziehung

$$\overline{\Delta H}_{BiBr_3} = RT \ln \frac{a_{BiBr_3}}{x_{EiBr_3}}$$
(5)

ermittelt worden. Das dabei zugrunde gelegte Modell der regulären Lösung dürfte im vorliegenden Falle zwar nur in grober Näherung zutreffen, eine sehr entscheidende Änderung der Resultate ist durch eine weitergehende Näherung indessen kaum zu erwarten.

Die Ergebnisse sind in Abb. 9 mit eingezeichnet. Sie ordnen sich in den Gang der aus unseren Dampfdruckmessungen ermittelten Aktivitätsisothermen völlig ein.

Anhand der Duhem-Margules-Gleichung sind schiesslich aus den thermodynamischen Aktivitäten des BiBr<sub>3</sub> diejenigen des Wismuts berechnet worden. Die Ergebnisse sind in Abb. 9 dargestellt. Die  $a_{Bi}$ -Isotherme für 570°C weist im gesamten Konzentrationsbereich positive Abweichungen vom Raoultschen Gesetz auf.

### Partielle und integrale freie Mischungsenthalpien

Mit den gemäss Gl. (3) aus den thermodynamischen Aktivitäten erhaltenen partiellen freien Mischungsenthalpien sind bekanntlich gemäss

$$\Delta G = x_{\rm Bi} \overline{\Delta G}_{\rm Bi} + x_{\rm BiBr_3} \overline{\Delta G}_{\rm BiBr_3} \tag{6}$$

die entsprechenden integralen Grössen zugänglich. D'e für 570°C resultierenden Ergebnisse sind in Abb. 10 dargestellt.



Abb. 10. Partielle und integrale freie Mischungsenthalpien 'flüssiger Bi-BiBr3-Lösungen bei 570°C

### Integrale Mischungsenthalpien

Die integralen Mischungsenthalpien wurden auf der Basis von Wärmeinhaltsmessungen ermittelt. Bei der experimentellen Durchführung fielen die in Glasampullen eingeschmolzenen Bi-BiBr<sub>3</sub>-Proben von einer Temperatur, bei der sie einphasig waren, in das Kalorimeter und nahmen hier sehr schnell die Kalorimetertemperatur von 20°C an. Dabei trat, wie bereits weiter oben bemerkt, keine nennenswerte Bildung von BiBr ein. Die Probe bestand im Endzustand aus einem Gemenge der beiden festen Phasen Wismuttribromid und Wismut. Nach Berücksichtigung des Wärmeinhalts des Ampullenmaterials ergibt sich die Mischungsenthalpie der homogenen flüssigen Lösung als Differenz zwischen dem Wärmeinhalt der Mischphase und der Summe der Wärmeinhalte der Komponenten.

Die resultierenden  $\Delta H$ -Werte sind in Abb. 11 wiedergegeben. Im wismutarmen Bereich treten negative, im wismutreichen Konzentrationsgebiet positive Mischungs-



Abb. 11. Integrale Mischungsenthalpien flüssiger Bi-BiBr3-Lösungen.

enthalpien auf. Es sei bereits hier bemerkt, dass dies qualitativ den Verhältnissen entspricht, wie sie bei einer früheren Untersuchung im System  $Bi-BiJ_3$  gefunden wurden. Die Verbindungstendenz der salzreichen Mischphasen ist hier jedoch stärker als dort und die Entmischungstendenz der metallreichen Lösungen schwächer ausgeprägt als im System  $Bi-BiJ_3$ .

# Integrale Mischungsentropien

Gemäss der Helmholtz-Gibbsschen Gleichung

$$\Delta G = \Delta H - T \cdot \Delta S \tag{7}$$

ergeben sich aus den nun vorliegenden freien Mischungsenthalpien und den Mischungsenthalpien die Mischungsentropien der flüssigen Bi-BiBr<sub>3</sub>-Lösungen. Abb. 12 gibt die Resultate wider. Zum Vergleich sind die "idealen" Mischungsentropiewerte mit eingezeichnet, die für den Fall einer völlig statistischen Verteilung der in der Lösung vorhandenen Teilchen und bei Fehlen von Änderungen der Bindungsverhältnisse bei der Mischphasenbildung aus den Komponenten zu erwarten wären. Die erheblichen Abweichungen der experimentellen Werte von den "idealen" Mischungsentropien sind unmittelbar ersichtlich.



Abb. 12. Integrale Mischungsentropien flüssiger Bi-BiBr3-Lösungen.

### ERÖRTERUNG

Um einen Überblick über das thermodynamische Verhalten der Systeme des Wismuts mit seinen Trihalogeniden zu gewinnen, sollen im Folgenden die für das System Bi-BiBr<sub>3</sub> ermittelten thermodynamischen Eigenschaften mit denen der beiden analogen Systeme Bi-BiCl<sub>3</sub> und Bi-BiJ<sub>3</sub> verglichen und gemeinsam erörtert werden. Eine Zusammenfassung der Zustandsdiagramme und der Konzentrationsabhängigkeit der wichtigsten Zustandsfunktionen gibt Abb. 13.

Die Zustandsdiagramme Bi-BiCl<sub>3</sub> und Bi-BiBr<sub>3</sub> sind weitgehend ähnlich. Es gibt nur geringe Unterschiede in den Temperaturen der einzelnen nonvarianten Gleichgewichte. Diesen beiden Systemen gegenüber weichen die Gleichgewichtsverhältnisse im System Bi-BiJ<sub>3</sub> merklich ab. Der von der Mischungslücke überstrichene Konzentrationsbereich ist kleiner und der kritische Entmischungspunkt liegt nur wenig höher als der Schmelzpunkt der Salzkomponente. Beides deutet auf eine gegenüber den anderen Wismut-Wismuthalogenid-Systemen verminderte Entmischungstendenz hin.

Eine im Vergleich zu den Eigenschaften des  $BiJ_3$  grössere Ähnlichkeit zwischen  $BiCl_3$  und  $BiBr_3$  deutet sich unter anderem auch in den Schmelzenthalpien an. Wenn man analoge Struktur- und Bindungsverhältnisse in allen Wismut(III)-Halogeniden annimmt, könnte ein regelmässiger Anstieg der Schmelzenthalpie mit dem Atomgewicht des jeweils beteiligten Halogens erwartet werden. Dies ist indessen nicht der Fall, wie ein Blick auf Tabelle IV zeigt. Die Schmelzenthalpie des  $BiJ_3$  ist wesentlich

### TABELLE IV

SCHMELZ- UND UMWANDLUNGSENTHALPIEN DER WISMUTTRIHALOGENIDE (CAL/MOL)

| Substanz          | Schmelzenthalpie   | Umwandlungsenthalpie |  |  |
|-------------------|--------------------|----------------------|--|--|
| BiCl <sub>3</sub> | $5680 \pm 80^{13}$ |                      |  |  |
| BiBr <sub>3</sub> | $5140 \pm 130$     | $1150 \pm 80$        |  |  |
| BiJ <sub>3</sub>  | $9550 \pm 160^{2}$ |                      |  |  |



Abb. 13. Zustandsdiagramme und thermodynamische Eigenschaften der flüssigen Lösungen der Systeme Bi-BiCl<sub>3</sub>, Bi-BiBr<sub>3</sub> und Bi-BiJ<sub>3</sub>.

höher als die des BiBr<sub>3</sub> und des BiCl<sub>3</sub>, aber diejenige des BiBr<sub>3</sub> ist niedriger als die Schmelzenthalpie des Wismuttrichlorids. Diese Unregelmässigkeit dürfte damit zusammenhängen, dass bereits beim festen BiBr<sub>3</sub> eine Änderung des atomaren Aufbaus in Richtung auf die Struktur- und Bindungsverhältnisse im geschmolzenen Zustand eintritt, und zwar bei der Umwandlung bei 156°C. Wird die mit diesem Modifikationswechsel verknüpite Enthalpieänderung zur Schmelzenthalpie addiert, so ergibt sich ein Betrag von 6290 cal/Mol, der merklich höher ist als die Schmelzenthalpie des BiCl<sub>3</sub> von  $\Delta H^{f} = 5680 \text{ cal/Mol}^{13}$ . Es sei noch bemerkt, dass die Schmelzenthalpie des BiJ<sub>3</sub> mit  $\Delta H^{f} = 9550 \text{cal/Mol}$  erstaunlich hoch liegt. Die offenbar gegenüber den Verhältnissen im Festkörper nur noch relative schwachen Bindungskräfte in der Schmelze äussern sich auch in der guten Löslichkeit von Wismut in flüssigem BiJ<sub>3</sub>.

Aus Abb. 13 ist ersichtlich, dass im System Bi-BiJ<sub>3</sub> die thermodynamischen Aktivitäten des BiJ<sub>3</sub> im wismutreichen Gebiet zunächst oberhalb der Raoultschen Geraden verlaufen, dann aber bei mittleren Wismutkonzentrationen die Raoultsche Gerade schneiden. Nach unseren Messungen ist das im System Bi-BiBr<sub>3</sub> nicht der Fall. Von Interesse schien auch ein Vergleich mit den Verhältnissen im System Bi-BiCl<sub>3</sub> zu sein. Für dieses System liegen nur für den Konzentrationsbereich von  $x_{Bi} = 0$  bis  $x_{Bi} = 0.35$  Dampfdruckmessungen vor<sup>12</sup>. Die daraus errechneten thermodynamischen Aktivitäten des BiCl<sub>3</sub> zeigen politive Abweichungen von der Geraden des Raoultschen Gesetzes.

Ähnlich wie im System Bi-BiBr<sub>3</sub> haben wir auch in diesem Falle in der weiter oben dargelegten Weise Aktivitäten des Wismuttrihalogenids anhand des von Yosim und Mitarb.<sup>11</sup> angegebenen Zustandsdiagramms berechnet. Während in den Systemen Bi-BiJ<sub>3</sub><sup>2</sup> und Bi-BiBr<sub>3</sub> die aus dem Zustandsdiagramm gewonnenen mit den experimentell erhaltenen Aktivitäten übereinstimmen, ist dies beim System Bi-BiCl<sub>3</sub> nicht der Fall (vgl. Abb. 13). Die aus dem Zustandsdiagramm für Konzentrationen zwischen 0 und 28 At.-% Bi berechneten Aktivitäten weisen geringe negative Abweichungen von der Geraden des Raoultschen Gesetzes auf, während die aus den Dampfdruckmessungen gewonnen merkliche positive Abweichungen zeigen. Eine unmittelbare Entscheidung, welches von diesen Ergebnissen den wahren Verhältnissen entspricht, ist aufgrund der vorliegenden Kenntnisse nicht möglich. Indessen weist die Gegebenheit, dass die Mischungslücke im Systen. Bi-BiCl<sub>3</sub> noch etwas stärker ausgedehnt ist als im System Bi-BiBr<sub>3</sub>, darauf hin, dass die aus den Dampfdrucken berechneten Aktivitäten den tatsächlichen Sachverhalt eher richtig wiedergeben dürften.

Aufgrund der begrenzten Mischbarkeit im flüssigen Zustand sind für die geschmolzenen Mischphasen der Systeme Bi-BiJ<sub>3</sub> und Bi-BiBr<sub>3</sub> positive Mischungsenthalpien zu erwarten. Zum anderen ist auch die in der Bildung der festen Subhalogenide zum Ausdruck kommende Verbindungstendenz zu beachten, die zweifellos auch im flüssigen Zustand in gewissem Umfang vorhanden ist und einen negativen Beitrag zur Mischungsenthalpie liefern sollte. Beide Tendenzen sind anhand der  $\Delta H$ -Konzentrations-Kurven unmittelbar erkennbar. Bei metallreichen Lösungen dominiert die Entmischungstendenz, bei salzreichen die Neigung zur Verbindungsbildung.

Bei intermetallischen Verbindungen wird häufig beobachtet, dass die sie bedingenden speziellen Bindungsverhältnisse sich auch im flüssigen Zustand in einigen Eigenschaften ausprägen, und zwar in der Regel in dem Konzentrationsbereich, in dem im festen Zustand die zugehörige intermetallische Phase existent ist. Nimmt man analoge Verhältnisse auch in den Wismut-Wismuthalogenid-Systemen an, so sollten im Bereich um 66 At.-% Bi merkliche negative Mischungsenthalpien erwartet werden. Dies ist indessen nicht der Fall. Vielmehr ist in diesem Konzentrationsbereich eine Mischungslücke zu finden und dementsprechend treten auch positive Mischungsenthalpien auf. Die Verbindungstendenz wird hier offenbar durch einen starken Fehlpassungsanteil überdeckt.

Bekanntlich ist beim Einbau zu grosser oder zu kleiner Atome in eine kristalline Wirtsmatrix eine elastische Verzerrungsenergie aufzuwenden, die einen positiven Beitrag zur Mischungsenthalpie und zur Mischungsentropie des Mischkristalls liefert. Analoge Fehlpassungserscheinungen sind auch bei der Bildung flüssiger Lösungen aus verschieden grossen Teilchen anzutreffen. Bei vorgegebener Atomvolumendifferenz sind sie zwar in flüssigen Lösungen kleiner als im ferngeordneten Substitutionsmischkristall, sie unterscheiden sich indessen — wie am Beispiel binärer Metallsysteme gezeigt werden konnte — nur etwa um den Faktor 2 und können bei grossen Atomradiendifferenzen beträchtliche Beträge erreichen<sup>14</sup>.

Für die hier interessierenden flüssigen Lösungen ist kaum anzunehmen, dass die Salzkomponente merklich dissoziiert ist, selbst wenn man hohe Salzverdünnungen annimmt. Bei hohen Wismutgehalten ist ferner eine Flüssigkeitsstruktur anzunehmen, die derjenigen des reinen geschmolzenen Wismuts ähnlich ist. Beim Einbau der relativ zu den Atomen der Wirtsmatrix grösseren halogenhaltigen Atomaggregate in solche Schmelzen ist eine mit der Störung der Flüssigkeitsstruktur zusammenhängende Fehlpassungsenthalpie zu erwarten. Sie ist im vorliegenden Falle offenbar so gross, dass sie den Bindungsanteil zur Mischungsenthalpie bei hohen Wismutgehalten überwiegt.

Mit steigendem Halogenidgehalt nimmt der Fehlpassungsanteil naturgemäss zu mittleren Konzentrationen hin zu. Auf der BiX3-Seite dürfte indessen die Schmelze anders aufgebaut sein, so dass hier andere Faktoren dominieren können. Für die Konstitution solcher Schmelzen sind zwei Modelle entworfen worden. Cubicciotti<sup>15</sup> nimmt an, dass Metallatome in Lücken der quasikristallin aufgebaut gedachten Halogenidschmelze eingebaut sind. Diese Annahme wird unter anderem durch Ergebnisse von Messungen des Volumeneffekts bei der Bildung flüssiger Bi-BiX3-Lösungen gestützt<sup>16-18</sup>. Andererseits gibt es zahlreiche Hinweise dafür, dass ein Gemisch von Molekeln in der Lösung auftritt, wobei die verschiedenen Spezies durch Reduktion der Kationen durch das zum BiX3 zugesetzte Wismutmetall zustande kommen sollen<sup>1</sup>. Darauf deuten z.B. Leitfähigkeitsmessungen hin<sup>19</sup>. Eine Klärung der wahren Situation steht noch aus<sup>20</sup>. Unabhängig davon, ob Wismutatome in die Lücken der salzreichen Schmelze eingebaut oder ob nach einer Reaktion, in deren Verlauf das metallische Wismut ionisiert und als Bestandteil grösserer Atomaggregate inkorporiert wird, ist in keinem Falle eine beträchtliche "Fehlpassung" der Flüssigkeitsstruktur zu erwarten. Bei geringen Wismutkonzentrationen kann der Bindungsanteil dominieren.

Mit dieser Vorstellung ist auch die Gegebenheit in Übereinstimmung, dass die maximale positive Mischungsenthalpie im System  $Bi-BiJ_3$  und die maximale negative Mischungsenthalpie im System  $Bi-BiBr_3$  einen grösseren Betrag aufweist, als in dem jeweils anderen System. Im System  $Bi-BiJ_3$  ist auf der Wismutseite infolge des grossen

Atomvolumens des Jodids naturgemäss ein grösserer Fehlpassungsanteil zu erwarten als im Bromidsystem. Es ist indessen zu beachten, dass eine stärker ausgeprägte Verbindungstendenz im Bromidsystem gegenüber den Bindungsverhältnissen im Jodidsystem einen ähnlichen Effekt bewirken kann. Möglicherweise sind beide Einflüsse für die vorhandenen Unterschiede in den Mischungsenthalpien der hier interessierenden Systeme verantwortlich.

In analoger Weise können die Beträge der Mischungsentropien und deren Konzentrationsabhängigkeit durch die gegenläufige Wirkung der beiden genannten Faktoren erklärt werden. Die Gegebenheit, dass im System Bi-BiBr<sub>3</sub> im gesamten Konzentrationsbereich die gemäss

$$\Delta S^{\text{ex}} = \Delta S - \Delta S_{\text{ideal}} \tag{7}$$

definierten Überschussentropien ein negatives Vorzeichen haben, deutet den dominierenden Einfluss des Bindungsanteils in diesem System an. Aus dem Gang der  $\Delta S^{ex}$ -Werte mit der Konzentration ist ferner auch der Einfluss der Fehlpassung auf der Wismutseite des Systems erkennbar, die einen positiven Beitrag zur Mischungsentropie liefert und daher in diesem Bereich zu kleineren negativen Überschussentropien führt. Entsprechendes gilt für das System Bi-BiJ<sub>3</sub>. Hier sind allerdings nur im salzreichen Bereich negative Überschussentropien vorhanden. Bei hohen Wismutgehalten macht sich der dominierende Einfluss der Fehlpassung bemerkbar, der hier positive Überschussentropien von erheblichen Beträgen bedingt.

#### DANK

Herrn Prof. Dr. Th. Heumann danken wir für die wohlwollende Förderung dieser Arbeit.

Desgleichen sind wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Bereitstellung von Personal- und Sach-mitteln zu Dank verpflichtet.

#### LITERATUR

- 1 M. A. BREDIG, in M. BLANDER (Ed.), Mixtures of Metals with Molten Salts, Molten Salt Chemistry, Interscience, New York, 1964.
- 2 B. PREDEL UND D. ROTHACKER, Thermochim. Acta, 1 (1970) 477.
- 3 B. PREDEL UND D. ROTHACKER, Thermochim. Acta, 2 (1971) 25.
- 4 B. G. EGGINK, Z. Phys. Chem., 64 (1908) 449.
- 5 G. G. URAZOW UND M. A. SOKOLOWA, Akad. Nauk S. S. S. R., Inst. Gen. Inorg. Chem., 24 (1954) 151.
- 6 S. J. YOSIM, L. D. RANSOM, R. A. SALLACH UND L. E. TOPOL, J. Phys. Chem., 66 (1962) 28.
- 7 L. E. TOPOL UND L. D. RANSOM, J. Phys. Chem., 64 (1960) 1339.
- 8 D. CUBICCIOTTI, J. Phys. Chem., 64 (1960) 1506.
- 9 F. D. ROSSINI, D. D. WAGMAN, W. H. EVANS, S. LEVINE UND J. JAFFE, Nat. Bur. Stand. Circ., 500 (1952) 584.
- 10 D. CUBICCIOTTI UND F. J. KENESHEA, J. Phys. Chem., 62 (1958) 999.
- 11 S. J. YOSIM, A. J. DARNELL, W. G. GEHMAN UND S. W. MAYER, J. Phys. Chem., 63 (1959) 230.

.

12 D. CUBICCIOTTI, F. J. KENESHEA UND C. M. KELLEY, J. Phys. Chem., 62 (1958) 463.

- 13 L. E. TOPOL, S. W. MAYER UND L. D. RANSOM, J. Phys. Chem., 64 (1960) 862.
- 14 B. PREDEL, Acta Met., 14 (1966) 209.
- 15 D. CUBICCIOTTI, J. Metals, 5 (1953) 1106.
- 16 F. J. KENESHEA UND D. CUBICCIOTTI, J. Phys. Chem., 62 (1958) 843.
- 17 F. J. KENESHEA UND D. CUBICCIOTTI, J. Phys. Chem., 63 (1959) 1112.
- 18 F. J. KENESHEA UND D. CUBICCIOTTI, J. Phys. Chem., 63 (1959) 1472.
- 19 A. H. W. ATEN, Z. Phys. Chem., 66 (1909) 641; ibid., 73 (1910) 624.
- 20 N. H. NACHTRIEB, J. Phys. Chem., 66 (1962) 1163.